Digital Logic Circuits

Digital System Design

CS-173 Fundamentals of Digital Systems

Mirjana Stojilovic

FUNDAMENTALH o Spring 2025

D IGITAL

SYSTEMS

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS
Examples of FSMs

CS-173, © EPFL, Spring 2025

Let’'s Talk About... i ’

Some More Digital Circuit Design Examples

CS-173, © EPFL, Spring 2025 &
© kras99 / Adobe Stock

Quick Outline

= Digital systems with buses
Example: Swapping two registers

« Bus with tri-state drivers
« Bus with a MUX
= Verilog:
« Reduction operators
» (Generate construct
« RCA with a for loop
« RCA with a generate construct

CS-173, © EPFL, Spring 2025

4
© kras99 / Adobe Stock

Recall: Bus

In Verilog
e with a MUX
e with tri-state drivers

CS-173, © EPFL, Spring 2025 5
© kras99 / Adobe Stock

Recall: Bus

Previously on FDS

= Digital systems are commonly
composed of several modules
exchanging data by means of
a common set of wires

= This shared set of wires
IS referred to as a bus

» Bus receives data from one or more
modules—one at a time—and
brings it to the inputs of one
or more modules

CS-173, © EPFL, Spring 2025

n-bit Bus
(shared, common interconnects)

n
Module 1 /

Module
K+1

Module Z

Module K

Note: Optional feedback paths

Recall: Tri-State Drivers

Previously on FDS

=

P\H
- O = OfE
= O N N |~

R — o0

= \When the enable input is inactive, the output is electrically
disconnected from the data input; disconnected state is referred
to as high-impedance state and usually denoted as Z (or z)
» Three states of a tri-state driver are logical 0, logical 1, and Z

* In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.

» https.//en.wikipedia.org/wiki/Electrical_impedance

https://en.wikipedia.org/wiki/Electrical_impedance

Recall: Bus With Tri-State Drivers

Previously on FDS

61 mn
n n
Module 1
n
€2
n n
Module 2
n
EK

n n
Module K
A

h tri-state drivers, controlled

CS-17/3, © EPFL, Spring 20: R
by a common enable sighal

Module
K+

Module Z

= Only one of the enable signals
IS active at a time so that short
circuits are avoided

» There is another module,
a controller FSM, responsible for
the activation of the select signals
(not shown)

Recall: Bus With Tri-State Drivers

Previously on FDS

el n = Bus implemented with tri-state
n n drivers is less common today;
Module 1 . it is used when one expects
s Msf‘;'e additional modules will be added
. D n to the system in the future
Module 2 : :
n
Module Z
€K

n n
Module K
‘\\

h tri-state drivers, controlled

CS-17/3, © EPFL, Spring 20: R
by a common enable sighal

Bus with Tri-State Drivers

Example: Swapping Two Registers

CS-173, © EPFL, Spring 2025 10
© kras99 / Adobe Stock

(7]
i
—
o
=
<
x
1]

Swapping Two Registers

Bus with Tri-State Drivers

Consider a system with three
registers: R1, R2, and R3

= Design a controller FSM that swaps
the contents of registers R1 and R2,

using R3 for temporary storage

= Write a Verilog model of the system

CS-173, © EPFL, Spring 2025

swap ——»
clk ——p

done «——

Control
circuit
(FSM)

}%3h1

}210ut
Rl R1
ngout
R2, | R2
}%30ut

R3

Shared

> interconnect

with tri-state
drivers

11

EXAMPLES

Swapping Two Registers

FSM Ports

= swap
 Control signal triggering
(initiating) the swap
 [nput
= done
« 1" (high) at the end of the swap;
0’ (low), otherwise

e Qutput swap ——»

clk ———

= Synchronous power-on reset

done «——

* |[nput, not shown

Control
circuit
(FSM)

R]-out

R]-in

RQout

R1

R2;,

R30ut

R2

CS-173, © EPFL, Spring 2025

R3in

R3

Shared

> interconnect

with tri-state
drivers

12

(7]
i
—
o
=
<
x
1]

Swapping Two Registers

FSM Ports

= RTout, R2out, R3out
* Write to the bus

* |f active, places the value
from a register to the bus

e Qutput
= R1in, R2in, R3in
* Write to the register

* |f active, places the value
from the bus to a register

e Qutput

CS-173, © EPFL, Spring 2025

swap ——»
clk ——p

done «——

Control
circuit
(FSM)

}210ut

}%1in

ngout

R1

R2;,

}%30ut

R2

}%3h1

R3

Shared

> interconnect

with tri-state
drivers

13

SWaA reset
Swapping Two Registers m
FSM

(I
B
| |
| |

= Algorithm for swapping:
» Swap starts — Copy data from R2 to R3
» Copy data from R1 to R2
« Copy contents of R3to RT — Swap ends

= States of the FSM

IDLE: No swapping
R2TOR3. First copy
R1TOR2: Second copy
R3TOR1: Third copy

= Synchronous power-on reset

EXAMPLES

R1TOR2

A 4

R3TOR1

CS-173, © EPFL, Spring 2025

(7]
i
—
o
=
<
x
1]

Swapping Two Registers

IDLE State

Swap reset
’/

IDLE
Rloutv Rlin: RQOut: RQin: Rgouta Rsinv done

l swap

No writing to the bus

No writing to the registers

Active "swap" starts the data movement
Default state after reset

CS-173, © EPFL, Spring 2025

swap ——»
clk ——p

done «——

Control
circuit
(FSM)

lzlout

}%1in

l%20ut

R1

v

R2;,

}%30ut

R2

v

}%3h1

R3

v

Shared
interconnect
with tri-state

drivers

15

(7]
i
—
o
=
<
x
1]

Swapping Two Registers

R2TOR3 State

From IDLE

l swap

R2TOR3

mOuta min: Rzout ’ Ein: mouta Rgina done

|

Writing from register R2 to the bus
Writing from the bus to register R3

CS-173, © EPFL, Spring 2025

swap ——»
clk ——p

done «——

Control
circuit
(FSM)

lzlout

R1;y

ngout

R1

v

}%2h1 ,

}%30ut

R2

g

v

R3iy

R3

v

Shared
interconnect
with tri-state

drivers

16

(7]
i
—
o
=
<
x
1]

Swapping Two Registers

R1TOR2 State

From R2TOR3

|

R1TOR2

Rlout: mi]rlu Eout: RQina R?’outn R3ina done

|

Writing from register R1 to the bus
Writing from the bus to register R2

CS-173, © EPFL, Spring 2025

swap ——»
clk ——p

done «——

Control
circuit
(FSM)

lzlout

}%1in

ngout

R1

JL

v

R2;,

}%30ut

\Y4

R2

v

}%3h1

R3

v

Shared
interconnect
with tri-state

drivers

17

Swapping Two Registers

R3TOR1 State

CS-173, © EPFL, Spring 2025

|
|
|
From RTTORZ | Ry ‘
| .
l | Bl | R e
0 ' >
EJ R3TOR1 :
= S S _ -
% Rlouta Rlin: RQouta Rzina R30ut7 Rgin; done : ContrOI RQOut ‘ Intes:lcaorr?:ect
: - . |
l | c(:lig::/;;c R2;, R2 —>| with tri-state
' D drivers
To IDLE :
Writing from register R3 to the bus : swap ——» R3out
Writing from the bus to register R1 Lok ——p R3
"Done" becomes active : done «—— A3 | S —
|
|
|
|
|

Swapping Two Registers m ,,’ifset

Summary

IDLE
Rlouta Rlin: Rzout: RQin: Rgouta R?’ina done

= Algorithm for swapping:

» Swap starts — Copy data from R2 to R3
» Copy data from R1 to R2
« Copy contents of R3to RT — Swap ends

= States of the FSM
* IDLE: No swapping
« R2TOR3: First copy
« R1TOR2: Second copy
« R3TOR1: Third copy

= Synchronous power-on reset

SWap

R2TOR3

m01,1‘57 min: R2out7 Ein: mout: Rsin: done

EXAMPLES

Rlouta miI‘la mouta Rzina RSOuta Rgina done

A 4

R3TOR1
mout: Rlin: Eouta min: Rsout: mim done

))) s N

|
|
-
)

CS-173, © EPFL, Spring 2025

Swapping Two Registers

FSM in Verilog
'module control (clk, reset, swap, Rlin, Rlout, R2in, R2out, R3in, R3out, done);
.~ input clk, reset, swap;

output reg R1lin, Rlout, R2in, R2out, R3in, R3out, done;

parameter IDLE = 2'b00, R2TOR3 = 2'b0l, R1TOR2 = 2'b10, R3TOR1l = 2'bl1l;

20

reg [1:0] S _next, S; -
0 L o o il R]-Qut__ e —
T
S R1:, R1
3 S
Control | fiZy: > inteS::zr:rC\]ect
circuit
(,I:S:,ll) R2in R2 —>| with tri-state
> drivers
swap ————» R3ou
clk ——> g
. R3
CS-173, © EPFL, Spring 2025 done +——— R3¢> S —

(7]
i
—
o
=
<
x
1]

Swapping Two Registers

FSM in Verilog

// Next-state logic
always @ (*) begin
S_next = IDLE; // default, idle state

case (S)
IDLE: if (swap) S _next = R2TOR3;
else S next = IDLE;

R2TOR3: S next = R1TOR2;

R1TOR2: S _next = R3TOR1;

R3TOR1: S next = IDLE;
: default: S_next = IDLE; // default
- endcase
. end

CS-173, © EPFL, Spring 2025

Swap reset

IDLE

Rlouta Rlina R20ut7 Rzina R30ut: RSina done

SWap

Y

R2TOR3

m01,1‘57 min: R20ut7 Ein: mout: Rsin: done

Y

R1TOR2

Rlouta miI‘la mouta Rzina RSOuta Rgina done

A 4

))) s N

R3TOR1
mout: Rlin: Eouta Ein: Rsout: mim done

Swap reset

Swapping Two Registers /

FSM in Verilog

IDLE
Rlout, Rlin, R20ut, R2in, R3out, R3in, done

// State memory
always @ (posedge clk) begin

if (reset) S <= IDLE; // reset to IDLE swap
else S <= S _next; ¥
end

// Output logic
always @ (*) begin
Rlin = (S == R3TOR1);

EXAMPLES

Y

Rlout = (S == R1TOR2);
R2in = (S == R1TOR2); R1TOR2
R2out = (S == R2TOR3); Rlgut, Rlin, R26ut, R2in, R3out, R3in, done
R3in = (S == R2TOR3);
R3out = (S == R3TOR1);
done = (S == R3TOR1); *
end R3TOR1
endmodule

Rlout: le: RQOuta Rzmu Rsout: RSma done

CS-173, © EPFL, Spring 2025

))) s N

R2TORS3
Rlout, Rlin, R20ut, R2in, R3out, R3in, done

(7]
i
—
o
=
<
x
1]

Swapping Two Registers

Verilog, Contd.

= Missing pieces:
* Tri-state drivers

module bustri (w, en, f);

for the bus parameter n = 8; // default size
input [n-1:0] W;
input en;
output [n-1:0] f;
assign f = en ? w : 'bz;
// either assign a new value or high-impedance
endmodule

CS-173, © EPFL, Spring 2025

23

Swapping Two Registers

Verilog, Contd.

= Missing pieces:

o Register module module regn (D, clk, reset, en, Q);
: arameter n =8; // default size
’ for registers R1, R2, R3 input [no1:0] :
% input clk, reset, en;
] output reg [n-1:0] Q;

always @ (posedge clk) begin
if (reset) Q <= 0;
else if (en) Q <= D; // write enable
end
endmodule

CS-173, © EPFL, Spring 2025 24

Swapping Two Registers

Putting It All Together

module regswap (clk, reset, swap);
parameter width = 8; // width is "n", the number of wires on the bus
input clk, reset, swap;
wire wR1in, wRlout, wR2in, wR2out, wR3in, wR3out, wdone;
wire [width-1:0] wR1l, wR2, wR3, wBus;
// Instantiate controller module
control controller_module (.clk (clk), .reset (reset), .swap (swap),
.R1in (wR1in), .Rlout (wRlout), .R2in (wR2in), .R2out (wR2out),

.R3in (wR3in), .R3out (wR3out), .done (wdone));

EXAMPLES

// Instantiate registers

regn #(.n (width)) R1 (.D (wBus), .clk (clk), .reset (reset), .en (wRlin), .Q (wR1l));
regn #(.n (width)) R2 (.D (wBus), .clk (clk), .reset (reset), .en (wR2in), .Q (wR2));
regn #(.n (width)) R3 (.D (wBus), .clk (clk), .reset (reset), .en (wR3in), .Q (wR3));

// Bus with tri-state drivers
bustri #(.n (width)) bustril (.w (wR1), .en (wRlout), .f (wBus));
bustri #(.n (width)) bustri2 (.w (wR2), .en (wR2out), .f (wBus));

. . . . * Registers drive the inputs of tri-state drivers
bustri #(.n (width)) bustri3 (.w (wR3), .en (wR3out), .f (wBus)); . Tiietate buffers drive the hus
endmodule « Bus drives the register inputs

CS-173, © EPFL, Spring 2025 25

CS-173, © EPFL, Spring 2025

26

Bus with a MUX

Example: Swapping Two Registers

CS-173, © EPFL, Spring 2025 27
© kras99 / Adobe Stock

Recall: Bus With MUXes

Previously on FDS

Note: Optional feedback paths = Bys imp|emen’[ed with MUXes
IS more common
n
Module 1 /

» The MUX takes K (K> 2)
N-bit inputs and an [log,(K)]-bit

Mgd;ﬂe select signal s to select which

+ :

Module 2 n/ 1 of the inputs to pass to the
output

I P— - There is another module,
typically a controller FSM,
n responsible for the activation of
Module K +K—1 .
/ the select signals (not shown)
[log, (K)]
CS-173, © EPFL, Spring 2025 S

(7]
w
—
o
=
<
>
]

Swapping Two Registers

Bus with MUXes

Consider a system with three
registers: R1, R2, and R3

= Design a controller FSM that
swaps the contents of
registers R1 and R2, using
R3 for temporary storage

= Write a Verilog model of
the system

CS-173, © EPFL, Spring 2025

swap ——»

clk ——>

done «——

Control
circuit
(FSM)

R]-in -

R,

R1

R2

R3m

sel

R3

Shared
interconnect
with MUXes

29

(7]
w
—
o
=
<
>
]

Swapping Two Registers

FSM

= Algorithm for swapping:
» Swap starts — Copy data from R2 to R3
» Copy data from R1 to R2
« Copy contents of R3to RT — Swap ends

= States of the FSM

IDLE: No swapping
R2TOR3: First copy
RT1TOR2: Second copy
R3TORT: Third copy

= Synchronous power-on reset

CS-173, © EPFL, Spring 2025

m

reset

IDLE

SWap

R2TOR3

R1TOR2

A 4

{
|
|
|

R3TOR1

N N/ U/ \S—

30

Swapping Two Registers m ’,ﬁfset

FSM

IDLE
R1;,, R2;,, R3;,,, done, sel = IDLE

= No longer needing RTout/R2out/R3out
« MUX select signal sel fulfills the role | S
» MUX select signal is simply the state R2TOR3

of the FSM

= |n every state (every select signal
value), something is sent to the bus

Rlin, R2:in, R3in, done, sel = R2TOR3

EXAMPLES

Y

R1TOR2
R1i,, R2in, R3in, done, sel = RITOR2

A 4

R3TOR1
Rliy, R2in, R3in, done, sel = R3TORI1

))) s N
— —__/ — —

CS-173, © EPFL, Spring 2025 31

Swapping Two Registers

FSM in Verilog

'module controlbusmux (clk, reset, swap, Rlin, R2in, R3in, done, sel);
input clk, reset, swap;
output reg Rlin, R2in, R3in, done;

output reg [1:0] sel;
R]-in
o parameter IDLE = 2'b00, R2TOR3 = 2'b01l, »| R1 —
5 R1TOR2 = 2'b10, R3TOR1l = 2'bll; >
g reg [1:0] S _next, S;
Control R9 Shared
circuit in_,| R2 [K=| interconnect
(FSM) S with MUXes
swap >
R R3i,
clk > »| R3 kK—>
done «————
De

CS-173, © EPFL, Spring 2025 sel 1

(7]
w
—
o
=
<
>
]

Swapping Two Registers

FSM in Verilog

// Next-state logic
always @ (*) begin
S _next = IDLE;

case (S)
IDLE: if (swap)

else

R2TOR3:
R1TOR2:
R3TOR1:
default:

endcase

end

S next
S next
S next
S _next
S _next
S _next

R2TOR3;
IDLE;
R1TOR2;
R3TOR1;
IDLE;
IDLE;

CS-173, © EPFL, Spring 2025

swap v
D,,
IDLE
R1;,, R2;,, R3;,,, done, sel = IDLE
SWap
R2TORS3

Rlin, R2:in, R3in, done, sel = R2TOR3

A

y

R1TOR2

R1i,, R2in, R3in, done, sel = RITOR2

A

y

))) s N

R3TOR1
Rliy, R2in, R3in, done, sel = R3TORI1

N N/ U/ \S—

33

Swapping Two Registers Swap

FSM in Verilog >
IDLE

R1;,, R2;,, R3;,,, done, sel = IDLE

// State memory

always @ (posedge clk) begin swap
if (reset) S <= IDLE; -
else S <= S_next; R2TOR3

end

Rlin, R2:in, R3in, done, sel = R2TOR3

EXAMPLES

// Output logic

always @ (*) begin
Rlin = (S == R3TOR1);
R2in = (S == R1TOR2);
R3in = (S == R2TOR3);

Y

R1TOR2
R1i,, R2in, R3in, done, sel = RITOR2

done = (S == R3TOR1);
sel = S;
end .
“endmodule R3TOR1

Rliy, R2in, R3in, done, sel = R3TORI1

))) s N
— —__/ — —

CS-173, © EPFL, Spring 2025 34

(7]
w
—
o
=
<
>
]

Swapping Two Registers

Putting it All Together

module regswapbusmux (clk, reset, swap);

parameter width = 8; // width is "n", the number of wires on the bus

parameter IDLE = 2'b0@, R2TOR3 = 2°'
parameter R1TOR2 = 2'b1@, R3TOR1l =
input clk, reset, swap;

wire wR1lin, wR2in, wR3in, wdone;
wire [width-1:0] wR1l, wR2, wR3;
wire [1:0] wsel; // for the
reg [width-1:0] wBus; // for the
// Instantiate controller module
controlbusmux controller module (.

bo1l;
2'bl1;

bus with MUXes
bus with MUXes

clk (clk), .reset (reset), .swap (swap),

.R1lin (wR1in), .R2in (wR2in), .R3in (wR3in),
.done (wdone), .sel (wsel));

// Instantiate registers

regn #(.n (width)) R1 (.D (wBus),

regn #(.n (width)) R2 (.D (wBus),

regn #(.n (width)) R3 (.D (wBus),
CS-173, © EPFL, Spring 2025

.clk (clk), .reset (reset), .en (wRlin), .Q (wRl1l));
.clk (clk), .reset (reset), .en (wR2in), .Q (wR2));
.clk (clk), .reset (reset), .en (wR3in), .Q (wR3));

35
Complete the module by inserting the multiplexer block...

Swapping Two Registers

Verilog, Contd.

= Missing pieces
* A bus with a MUX

n \
2 = R 0
= wR1 ,
% wsel: select signal for the MUX
n wBus: value on the bus
= R2 + 1
- oo wBus (MUX output)
wR1: default value on the bus
. tput of register R1)
= R3 +2 (ou
whR3 /

CS-173, © EPFL, Spring 2025

Swapping Two Registers

Verilog, Contd.

// Bus with a multiplexer
n \\\\\ always @ (*) begin
i - RT 0 wBus = wR1;
S wR1 case (wsel)
= IDLE: wBus = wR1;
n R2TOR3: wBus = wR2;
=) R2 +H n B R1ITOR2: wBus = wR1;
P2 wous R3TOR1: wBus = WR3;
default: wBus = wR1;
n endcase
= R3 +2 end

CS-173, © EPFL, Spring 2025
Complete the module by inserting the multiplexer block...

CS-173, © EPFL, Spring 2025

38

Verilog

» Reduction operators

CS-173, © EPFL, Spring 2025 39
© kras99 / Adobe Stock

Verilog Reduction Operators

= Reduction operators are unary
operators (i.e., take one operand)
that perform bitwise operations
on all bits of the vector operand
to produce a single-bit result

CS-173, © EPFL, Spring 2025

reduction and
reduction nand
reduction or
reduction nor
reduction xor
reduction xnor

40

Verilog Reduction Operators
Contd.

» Reduction and, or, xor

 The first step of the operation applies the operator between the first bit
of the operand and the second

« The second and subsequent steps apply the operator between
the one-bit result of the prior step and the next bit of the operand

» Reduction nand, nor, xnor

« The result is computed by inverting the result of the reduction and, or,
and xor, respectively

Verilog Reduction Operators

Examples

= A=8DbT0T01111
« Example: z = &A

2= (((1&T)&T)&1)&0)&1)&0)&1) & reductionand

reduction nand

EXAMPLES
4
Qo

From least to most significant bit

| reduction or

Result:z=0 ~| reduction nor
A reduction xor
° Examp|e 7 = ~MNA ~A reduction xnor
z=~((((O*)A*)*"1)"0)*1)"0)* 1)
Result: z=1

CS-173, © EPFL, Spring 2025 42

Verilog Reduction Operators

Contd.

= Examples of practical scenarios

« Zero detection — check if any bit of a bus vector is 1" without a loop
wire zero = ~| my bus; // 1 if all bits are ©

« Parity checking — simple error detection (for memory, communication buses) wire
parity = ~data; // XOR all bits for parity

« Fast flag setting—a quick way to set a “done” flag if any of several modules have completed
wire done = | done_signals;

« Checking “all ones” quickly (e.g., completion/done flags, timers, etc.)
wire all ones = & status bits;

CS-173, © EPFL, Spring 2025

43

Verilog

« (Generate constructs
« Example: Ripple-Carry Adder

CS-173, © EPFL, Spring 2025 44
© kras99 / Adobe Stock

Recall: Full Adder

» Behavioral Verilog model

e

V'
a —
7 \

Emodule fulladd (a, b, c_in, s, c_out); § c_in—

input a, b, c _in;
output s, c out;

assign s = a ~ b * c_in;

_out
assign c out = (a & b) | (a & c_in) | (b & c_in); c-ou

v

v,
w

' endmodule

__

N e e o = - - ——

CS-173, © EPFL, Spring 2025 45

Ripple-Carry Adder with a for Loop

imodule ripplecarry (Cin, A, B, S, Cout);

parameter n = 32;
input Cin;
input [n-1:0] A, B;
output reg [n-1:0] S;
output reg Cout;

reg [n:0] C; // internal wires
integer k; // loop iterator, an integer

always @(*) begin
C[@] = Cin;
for (k = 0; k < n; k = k + 1) begin
S[k] = A[k] ~ B[k] ~ C[k];

An 1Bn A By Ay By
STl
FA |—cC, ; 821 FA e FA |=+Cin
I
T -
Sn—1 S1 So

C[k+1] = (A[k] & B[k]) | (A[k] & C[k]) | (B[k] & C[k]);

end
Cout = C[n];
end
" endmodule

CS-173, © EPFL, Spring 2025

46

Verilog Generate Construct

= Can we combine for loops with module instantiations? Yes!

= \Verilog generate construct allows module instantiation to be
included inside for loops and if-else statements

- generate construct lets us create multiple instances (loops, or
conditionally included) of hardware at compile time—cleanly and
systematically—without manually copying code (repetitive, harder
maintenance) and introducing errors (esp. when scaling the design)

« generate provides a way to create multiple pieces of hardware based
on parameters or iterations

CS-173, © EPFL, Spring 2025

47

Verilog Generate Construct

= |f a for loop is included in the generate block, the loop index
variable has to be of type genvar

= genvar is an integer variable that can only have values > 0,
(it would not make sense to instantiate a negative number of
modules) and can only be used inside generate blocks

CS-173, © EPFL, Spring 2025

48

Ripple-Carry Adder with a generate Construct

module ripplecarrygenerate (Cin, A, B, S, Cout);
parameter n = 32;
input Cin;
input [n-1:0] A, B;
output [n-1:0] S; // must match the type of fulladd port .s

output Cout; // must match the type of fulladd port c_out
genvar g; // generate loop iterator, must have genvar type
wire [n:0] C; // must match the type of fulladd ports .c_in, c_out

assign C[@] = Cin; // first carry

// generate block here

assign Cout = C[n]; // last carry
endmodule

CS-173, © EPFL, Spring 2025

49

Ripple-Carry Adder with a generate Construct

= Full adder ports a, b, c_in, s, and c_out connect to vectors A, B, carry C, and sum S, respectively

// generate block
generate // optional keyword, helps readability
for (g = 90; g < n; g =g+ 1) begin
fulladd stage (.a (A[g]), .b (B[g]), .c_in (C[g]), .s (S[g]), .c_out (C[g + 1]));
end
endgenerate // optional keyword, helps readability

= fulladd is the name of the module being instantiated multiple times

= stage is the name of one instance of a module; it is user-defined, so choose an appropriate one

CS-173, © EPFL, Spring 2025 50

CS-173, © EPFL, Spring 2025

51

Next on FDS

..Designing a Simple Processor

CS-173, © EPFL, Spring 2024 = l b o
.. L |*© supranee / Adobe Stock

Literature

FUNDAMENTALS OF

DIGITAL LOGIC

with Verilog Design

CS-173, © EPFL, Spring 2025

= Chapter 3: Number Representation and
Arithmetic Circuits
= 353354
= Chapter 7: Digital System Design
= /.7 Bus Structure

53

