
Digital Logic Circuits
Digital System Design

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

Spring 2025

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS
Examples of FSMs

CS-173, © EPFL, Spring 2025 2

Let’s Talk About…
Some More Digital Circuit Design Examples

CS-173, © EPFL, Spring 2025
© kras99 / Adobe Stock

3

© kras99 / Adobe Stock

Quick Outline

▪ Digital systems with buses
Example: Swapping two registers

• Bus with tri-state drivers

• Bus with a MUX

▪ Verilog:

• Reduction operators

• Generate construct

• RCA with a for loop

• RCA with a generate construct

CS-173, © EPFL, Spring 2025 4

Recall: Bus
In Verilog

• with a MUX

• with tri-state drivers

CS-173, © EPFL, Spring 2025
© kras99 / Adobe Stock

5

Recall: Bus
Previously on FDS

▪ Digital systems are commonly
composed of several modules
exchanging data by means of
a common set of wires

▪ This shared set of wires
is referred to as a bus

▪ Bus receives data from one or more
modules—one at a time—and
brings it to the inputs of one
or more modules

CS-173, © EPFL, Spring 2025

Module 1

Module 2

Module K

…

Module
K+1

Module Z

…

……

n-bit Bus
(shared, common interconnects)

Note: Optional feedback paths
6

▪ When the enable input is inactive, the output is electrically
disconnected from the data input; disconnected state is referred
to as high-impedance state and usually denoted as Z (or z)
• Three states of a tri-state driver are logical 0, logical 1, and Z

7

Recall: Tri-State Drivers
Previously on FDS

CS-173, © EPFL, Spring 2025

0 0 Z

0 1 Z

1 0 0

1 1 1

• In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.
• https://en.wikipedia.org/wiki/Electrical_impedance

https://en.wikipedia.org/wiki/Electrical_impedance

Recall: Bus With Tri-State Drivers
Previously on FDS

▪ Only one of the enable signals
is active at a time so that short
circuits are avoided

▪ There is another module,
a controller FSM, responsible for
the activation of the select signals
(not shown)

CS-173, © EPFL, Spring 2025

Module 1

Module
K+1

Module Z

Module 2

n tri-state drivers, controlled
by a common enable signal

Module K

… …

… …

8

Recall: Bus With Tri-State Drivers
Previously on FDS

▪ Bus implemented with tri-state
drivers is less common today;
it is used when one expects
additional modules will be added
to the system in the future

CS-173, © EPFL, Spring 2025

Module 1

Module
K+1

Module Z

Module 2

n tri-state drivers, controlled
by a common enable signal

Module K

… …

… …

9

Bus with Tri-State Drivers
Example: Swapping Two Registers

CS-173, © EPFL, Spring 2025
© kras99 / Adobe Stock

10

E
X

A
M

P
L

E
S

Swapping Two Registers
Bus with Tri-State Drivers

Consider a system with three
registers: R1, R2, and R3

▪ Design a controller FSM that swaps
the contents of registers R1 and R2,
using R3 for temporary storage

▪ Write a Verilog model of the system

CS-173, © EPFL, Spring 2025

Control
circuit
(FSM)

R1

R2

R3

Shared
interconnect
with tri-state

drivers

11

E
X

A
M

P
L

E
S

Swapping Two Registers
FSM Ports

▪ swap

• Control signal triggering
(initiating) the swap

• Input

▪ done

• '1' (high) at the end of the swap;
'0' (low), otherwise

• Output

▪ Synchronous power-on reset

• Input, not shown

CS-173, © EPFL, Spring 2025

Control
circuit
(FSM)

R1

R2

R3

Shared
interconnect
with tri-state

drivers

12

E
X

A
M

P
L

E
S

Swapping Two Registers
FSM Ports

▪ R1out, R2out, R3out

• Write to the bus

• If active, places the value
from a register to the bus

• Output

▪ R1in, R2in, R3in

• Write to the register

• If active, places the value
from the bus to a register

• Output

CS-173, © EPFL, Spring 2025

Control
circuit
(FSM)

R1

R2

R3

Shared
interconnect
with tri-state

drivers

13

E
X

A
M

P
L

E
S

Swapping Two Registers
FSM

▪ Algorithm for swapping:

• Swap starts → Copy data from R2 to R3

• Copy data from R1 to R2

• Copy contents of R3 to R1 → Swap ends

▪ States of the FSM
• IDLE: No swapping

• R2TOR3: First copy

• R1TOR2: Second copy

• R3TOR1: Third copy

▪ Synchronous power-on reset

CS-173, © EPFL, Spring 2025

IDLE

R2TOR3

R1TOR2

R3TOR1

14

E
X

A
M

P
L

E
S

Swapping Two Registers
IDLE State

CS-173, © EPFL, Spring 2025

IDLE

15

Control
circuit
(FSM)

R1

R2

R3

Shared
interconnect
with tri-state

drivers

No writing to the bus
No writing to the registers
Active "swap" starts the data movement
Default state after reset

E
X

A
M

P
L

E
S

Swapping Two Registers
R2TOR3 State

CS-173, © EPFL, Spring 2025 16

Control
circuit
(FSM)

R1

R2

R3

Shared
interconnect
with tri-state

drivers

Writing from register R2 to the bus
Writing from the bus to register R3

R2TOR3

From IDLE

E
X

A
M

P
L

E
S R1TOR2

Swapping Two Registers
R1TOR2 State

CS-173, © EPFL, Spring 2025 17

Control
circuit
(FSM)

R1

R2

R3

Shared
interconnect
with tri-state

drivers

Writing from register R1 to the bus
Writing from the bus to register R2

From R2TOR3

E
X

A
M

P
L

E
S

R3TOR1

Swapping Two Registers
R3TOR1 State

CS-173, © EPFL, Spring 2025 18

Control
circuit
(FSM)

R1

R2

R3

Shared
interconnect
with tri-state

drivers

Writing from register R3 to the bus
Writing from the bus to register R1
"Done" becomes active

From R1TOR2

To IDLE

E
X

A
M

P
L

E
S

Swapping Two Registers
Summary

▪ Algorithm for swapping:

• Swap starts → Copy data from R2 to R3

• Copy data from R1 to R2

• Copy contents of R3 to R1 → Swap ends

▪ States of the FSM
• IDLE: No swapping

• R2TOR3: First copy

• R1TOR2: Second copy

• R3TOR1: Third copy

▪ Synchronous power-on reset

CS-173, © EPFL, Spring 2025

IDLE

R2TOR3

R1TOR2

R3TOR1

19

E
X

A
M

P
L

E
S

Swapping Two Registers
FSM in Verilog

CS-173, © EPFL, Spring 2025

module control (clk, reset, swap, R1in, R1out, R2in, R2out, R3in, R3out, done);
input clk, reset, swap;
output reg R1in, R1out, R2in, R2out, R3in, R3out, done;
parameter IDLE = 2'b00, R2TOR3 = 2'b01, R1TOR2 = 2'b10, R3TOR1 = 2'b11;
reg [1:0] S_next, S;

20

Control
circuit
(FSM)

R1

R2

R3

Shared
interconnect
with tri-state

drivers

E
X

A
M

P
L

E
S

Swapping Two Registers
FSM in Verilog

CS-173, © EPFL, Spring 2025

// Next-state logic
always @ (*) begin
S_next = IDLE; // default, idle state
case (S)
IDLE: if (swap) S_next = R2TOR3;

else S_next = IDLE;
R2TOR3: S_next = R1TOR2;
R1TOR2: S_next = R3TOR1;
R3TOR1: S_next = IDLE;
default: S_next = IDLE; // default

endcase
end

21

IDLE

R2TOR3

R1TOR2

R3TOR1

E
X

A
M

P
L

E
S

Swapping Two Registers
FSM in Verilog

CS-173, © EPFL, Spring 2025

// State memory
always @ (posedge clk) begin
if (reset) S <= IDLE; // reset to IDLE
else S <= S_next;

end

// Output logic
always @ (*) begin
R1in = (S == R3TOR1);
R1out = (S == R1TOR2);
R2in = (S == R1TOR2);
R2out = (S == R2TOR3);
R3in = (S == R2TOR3);
R3out = (S == R3TOR1);
done = (S == R3TOR1);

end
endmodule

22

IDLE

R2TOR3

R1TOR2

R3TOR1

E
X

A
M

P
L

E
S

Swapping Two Registers
Verilog, Contd.

▪Missing pieces:
• Tri-state drivers

for the bus

CS-173, © EPFL, Spring 2025

module bustri (w, en, f);
parameter n = 8; // default size
input [n-1:0] w;
input en;
output [n-1:0] f;

assign f = en ? w : 'bz;
// either assign a new value or high-impedance

endmodule

23

E
X

A
M

P
L

E
S

Swapping Two Registers
Verilog, Contd.

▪Missing pieces:
• Register module

for registers R1, R2, R3

CS-173, © EPFL, Spring 2025

module regn (D, clk, reset, en, Q);
parameter n = 8; // default size
input [n-1:0] D;
input clk, reset, en;
output reg [n-1:0] Q;

always @ (posedge clk) begin
if (reset) Q <= 0;
else if (en) Q <= D; // write enable

end
endmodule

24

E
X

A
M

P
L

E
S

Swapping Two Registers
Putting It All Together

CS-173, © EPFL, Spring 2025

• Registers drive the inputs of tri-state drivers
• Tri-state buffers drive the bus
• Bus drives the register inputs

module regswap (clk, reset, swap);
parameter width = 8; // width is "n", the number of wires on the bus
input clk, reset, swap;
wire wR1in, wR1out, wR2in, wR2out, wR3in, wR3out, wdone;
wire [width-1:0] wR1, wR2, wR3, wBus;
// Instantiate controller module
control controller_module (.clk (clk), .reset (reset), .swap (swap),

.R1in (wR1in), .R1out (wR1out), .R2in (wR2in), .R2out (wR2out),

.R3in (wR3in), .R3out (wR3out), .done (wdone));

// Instantiate registers
regn #(.n (width)) R1 (.D (wBus), .clk (clk), .reset (reset), .en (wR1in), .Q (wR1));
regn #(.n (width)) R2 (.D (wBus), .clk (clk), .reset (reset), .en (wR2in), .Q (wR2));
regn #(.n (width)) R3 (.D (wBus), .clk (clk), .reset (reset), .en (wR3in), .Q (wR3));

// Bus with tri-state drivers
bustri #(.n (width)) bustri1 (.w (wR1), .en (wR1out), .f (wBus));
bustri #(.n (width)) bustri2 (.w (wR2), .en (wR2out), .f (wBus));
bustri #(.n (width)) bustri3 (.w (wR3), .en (wR3out), .f (wBus));

endmodule

25

CS-173, © EPFL, Spring 2025 26

Bus with a MUX
Example: Swapping Two Registers

CS-173, © EPFL, Spring 2025
© kras99 / Adobe Stock

27

Recall: Bus With MUXes
Previously on FDS

▪ Bus implemented with MUXes
is more common

▪ The MUX takes K (K  2)
n-bit inputs and an -bit
select signal s to select which
of the inputs to pass to the
output

▪ There is another module,
typically a controller FSM,
responsible for the activation of
the select signals (not shown)

CS-173, © EPFL, Spring 2025

Module 1

Module 2

Module K

Module
K+1

ModuleZ

0

1

K-1

………

… …

Note: Optional feedback paths

28

E
X

A
M

P
L

E
S

Swapping Two Registers
Bus with MUXes

Consider a system with three
registers: R1, R2, and R3

▪ Design a controller FSM that
swaps the contents of
registers R1 and R2, using
R3 for temporary storage

▪ Write a Verilog model of
the system

CS-173, © EPFL, Spring 2025

Control
circuit
(FSM)

R1

R2

R3

Shared
interconnect
with MUXes

29

E
X

A
M

P
L

E
S

Swapping Two Registers
FSM

▪ Algorithm for swapping:

• Swap starts → Copy data from R2 to R3

• Copy data from R1 to R2

• Copy contents of R3 to R1 → Swap ends

▪ States of the FSM
• IDLE: No swapping

• R2TOR3: First copy

• R1TOR2: Second copy

• R3TOR1: Third copy

▪ Synchronous power-on reset

CS-173, © EPFL, Spring 2025

IDLE

R2TOR3

R1TOR2

R3TOR1

30

E
X

A
M

P
L

E
S

Swapping Two Registers
FSM

▪ No longer needing R1out/R2out/R3out
• MUX select signal sel fulfills the role

▪ MUX select signal is simply the state
of the FSM

▪ In every state (every select signal
value), something is sent to the bus

CS-173, © EPFL, Spring 2025

IDLE

R2TOR3

R1TOR2

R3TOR1

31

E
X

A
M

P
L

E
S

Swapping Two Registers
FSM in Verilog

CS-173, © EPFL, Spring 2025

module controlbusmux (clk, reset, swap, R1in, R2in, R3in, done, sel);
input clk, reset, swap;
output reg R1in, R2in, R3in, done;
output reg [1:0] sel;

parameter IDLE = 2'b00, R2TOR3 = 2'b01,
R1TOR2 = 2'b10, R3TOR1 = 2'b11;

reg [1:0] S_next, S;

32

Control
circuit
(FSM)

R1

R2

R3

Shared
interconnect
with MUXes

E
X

A
M

P
L

E
S

Swapping Two Registers
FSM in Verilog

CS-173, © EPFL, Spring 2025

// Next-state logic
always @ (*) begin
S_next = IDLE;
case (S)

IDLE: if (swap) S_next = R2TOR3;
else S_next = IDLE;

R2TOR3: S_next = R1TOR2;
R1TOR2: S_next = R3TOR1;
R3TOR1: S_next = IDLE;
default: S_next = IDLE;

endcase
end

33

IDLE

R2TOR3

R1TOR2

R3TOR1

E
X

A
M

P
L

E
S

Swapping Two Registers
FSM in Verilog

CS-173, © EPFL, Spring 2025

// State memory
always @ (posedge clk) begin
if (reset) S <= IDLE;
else S <= S_next;

end

// Output logic
always @ (*) begin
R1in = (S == R3TOR1);
R2in = (S == R1TOR2);
R3in = (S == R2TOR3);
done = (S == R3TOR1);
sel = S;

end
endmodule

34

IDLE

R2TOR3

R1TOR2

R3TOR1

E
X

A
M

P
L

E
S

Swapping Two Registers
Putting it All Together

CS-173, © EPFL, Spring 2025 35

module regswapbusmux (clk, reset, swap);
parameter width = 8; // width is "n", the number of wires on the bus
parameter IDLE = 2'b00, R2TOR3 = 2'b01;
parameter R1TOR2 = 2'b10, R3TOR1 = 2'b11;
input clk, reset, swap;

wire wR1in, wR2in, wR3in, wdone;
wire [width-1:0] wR1, wR2, wR3;
wire [1:0] wsel; // for the bus with MUXes
reg [width-1:0] wBus; // for the bus with MUXes
// Instantiate controller module
controlbusmux controller_module (.clk (clk), .reset (reset), .swap (swap),

.R1in (wR1in), .R2in (wR2in), .R3in (wR3in),

.done (wdone), .sel (wsel));
// Instantiate registers
regn #(.n (width)) R1 (.D (wBus), .clk (clk), .reset (reset), .en (wR1in), .Q (wR1));
regn #(.n (width)) R2 (.D (wBus), .clk (clk), .reset (reset), .en (wR2in), .Q (wR2));
regn #(.n (width)) R3 (.D (wBus), .clk (clk), .reset (reset), .en (wR3in), .Q (wR3));

Complete the module by inserting the multiplexer block…

E
X

A
M

P
L

E
S

36

Swapping Two Registers
Verilog, Contd.

▪ Missing pieces
• A bus with a MUX

wsel: select signal for the MUX
wBus: value on the bus

(MUX output)
wR1: default value on the bus

(output of register R1)

CS-173, © EPFL, Spring 2025

R1

R2

R3

0

1

2

E
X

A
M

P
L

E
S

37

Swapping Two Registers
Verilog, Contd.

CS-173, © EPFL, Spring 2025

// Bus with a multiplexer
always @ (*) begin
wBus = wR1;
case (wsel)
IDLE: wBus = wR1;
R2TOR3: wBus = wR2;
R1TOR2: wBus = wR1;
R3TOR1: wBus = wR3;
default: wBus = wR1;

endcase
end

R1

R2

R3

0

1

2

Complete the module by inserting the multiplexer block…

CS-173, © EPFL, Spring 2025 38

Verilog
• Reduction operators

CS-173, © EPFL, Spring 2025
© kras99 / Adobe Stock

39

Verilog Reduction Operators

▪ Reduction operators are unary
operators (i.e., take one operand)
that perform bitwise operations
on all bits of the vector operand
to produce a single-bit result

CS-173, © EPFL, Spring 2025

& reduction and

~& reduction nand

| reduction or

~| reduction nor

^ reduction xor

~^ reduction xnor

40

Verilog Reduction Operators
Contd.

▪ Reduction and, or, xor
• The first step of the operation applies the operator between the first bit

of the operand and the second

• The second and subsequent steps apply the operator between
the one-bit result of the prior step and the next bit of the operand

▪ Reduction nand, nor, xnor
• The result is computed by inverting the result of the reduction and, or,

and xor, respectively

CS-173, © EPFL, Spring 2025 41

E
X

A
M

P
L

E
S

From least to most significant bit

Verilog Reduction Operators
Examples

▪ A= 8’b10101111
• Example: z = &A

z = (((((((1 & 1) & 1) & 1) & 0) & 1) & 0) & 1)

Result: z = 0

• Example: z = ~^A
z = ~(((((((1 ^ 1) ^ 1) ^ 1) ^ 0) ^ 1) ^ 0) ^ 1)

Result: z = 1

CS-173, © EPFL, Spring 2025

& reduction and

~& reduction nand

| reduction or

~| reduction nor

^ reduction xor

~^ reduction xnor

42

43

Verilog Reduction Operators
Contd.

▪ Examples of practical scenarios

• Zero detection – check if any bit of a bus vector is ‘1’ without a loop
wire zero = ~| my_bus; // 1 if all bits are 0

• Parity checking – simple error detection (for memory, communication buses) wire
parity = ^data; // XOR all bits for parity

• Fast flag setting—a quick way to set a “done” flag if any of several modules have completed
wire done = | done_signals;

• Checking “all ones” quickly (e.g., completion/done flags, timers, etc.)
wire all_ones = & status_bits;

CS-173, © EPFL, Spring 2025

Verilog
• Generate constructs

• Example: Ripple-Carry Adder

CS-173, © EPFL, Spring 2025
© kras99 / Adobe Stock

44

Recall: Full Adder

▪ Behavioral Verilog model

CS-173, © EPFL, Spring 2025

w1

w2

w3

fulladd

module fulladd (a, b, c_in, s, c_out);

input a, b, c_in;
output s, c_out;

assign s = a ^ b ^ c_in;
assign c_out = (a & b) | (a & c_in) | (b & c_in);

endmodule

45

module ripplecarry (Cin, A, B, S, Cout);
parameter n = 32;
input Cin;
input [n-1:0] A, B;
output reg [n-1:0] S;
output reg Cout;

reg [n:0] C; // internal wires
integer k; // loop iterator, an integer

always @(*) begin
C[0] = Cin;
for (k = 0; k < n; k = k + 1) begin
S[k] = A[k] ^ B[k] ^ C[k];
C[k+1] = (A[k] & B[k]) | (A[k] & C[k]) | (B[k] & C[k]);

end
Cout = C[n];

end
endmodule

Ripple-Carry Adder with a for Loop

CS-173, © EPFL, Spring 2025

FAFA FA

RCA

46

Verilog Generate Construct

▪ Can we combine for loops with module instantiations? Yes!

▪ Verilog generate construct allows module instantiation to be
included inside for loops and if-else statements
• generate construct lets us create multiple instances (loops, or

conditionally included) of hardware at compile time—cleanly and
systematically—without manually copying code (repetitive, harder
maintenance) and introducing errors (esp. when scaling the design)

• generate provides a way to create multiple pieces of hardware based
on parameters or iterations

CS-173, © EPFL, Spring 2025 47

Verilog Generate Construct

▪ If a for loop is included in the generate block, the loop index
variable has to be of type genvar

▪ genvar is an integer variable that can only have values  0,
(it would not make sense to instantiate a negative number of
modules) and can only be used inside generate blocks

CS-173, © EPFL, Spring 2025 48

module ripplecarrygenerate (Cin, A, B, S, Cout);
parameter n = 32;
input Cin;
input [n-1:0] A, B;
output [n-1:0] S; // must match the type of fulladd port .s
output Cout; // must match the type of fulladd port c_out
genvar g; // generate loop iterator, must have genvar type
wire [n:0] C; // must match the type of fulladd ports .c_in, c_out

assign C[0] = Cin; // first carry

// generate block here

assign Cout = C[n]; // last carry
endmodule

Ripple-Carry Adder with a generate Construct

CS-173, © EPFL, Spring 2025 49

// generate block
generate // optional keyword, helps readability
for (g = 0; g < n; g = g + 1) begin

fulladd stage (.a (A[g]), .b (B[g]), .c_in (C[g]), .s (S[g]), .c_out (C[g + 1]));
end

endgenerate // optional keyword, helps readability

Ripple-Carry Adder with a generate Construct

CS-173, © EPFL, Spring 2025 50

▪ Full adder ports a, b, c_in, s, and c_out connect to vectors A, B, carry C, and sum S, respectively

▪ fulladd is the name of the module being instantiated multiple times

▪ stage is the name of one instance of a module; it is user-defined, so choose an appropriate one

CS-173, © EPFL, Spring 2025 51

Next on FDS
…Designing a Simple Processor

52CS-173, © EPFL, Spring 2024
© supranee / Adobe Stock

Literature

CS-173, © EPFL, Spring 2025

▪ Chapter 3: Number Representation and
Arithmetic Circuits
▪ 3.5.3, 3.5.4

▪ Chapter 7: Digital System Design
▪ 7.1 Bus Structure

53

