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Previously on FDS
Examples of FSMs
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Let’s Talk About…
Some More Digital Circuit Design Examples
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Quick Outline

▪ Digital systems with buses
Example: Swapping two registers

• Bus with tri-state drivers

• Bus with a MUX

▪ Verilog: 

• Reduction operators

• Generate construct

• RCA with a for loop

• RCA with a generate construct
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Recall: Bus
In Verilog

• with a MUX

• with tri-state drivers
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Recall: Bus
Previously on FDS

▪ Digital systems are commonly 
composed of several modules 
exchanging data by means of
a common set of wires

▪ This shared set of wires
is referred to as a bus

▪ Bus receives data from one or more 
modules—one at a time—and 
brings it to the inputs of one
or more modules
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Module 1

Module 2

Module K

…

Module
K+1

Module Z

…

……

n-bit Bus
(shared, common interconnects)

Note: Optional feedback paths
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▪ When the enable input is inactive, the output is electrically 
disconnected from the data input; disconnected state is referred 
to as high-impedance state and usually denoted as Z (or z)
• Three states of a tri-state driver are logical 0, logical 1, and Z
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Recall: Tri-State Drivers
Previously on FDS
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0 0 Z

0 1 Z

1 0 0

1 1 1

• In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.
• https://en.wikipedia.org/wiki/Electrical_impedance

https://en.wikipedia.org/wiki/Electrical_impedance


Recall: Bus With Tri-State Drivers
Previously on FDS

▪ Only one of the enable signals
is active at a time so that short 
circuits are avoided

▪ There is another module, 
a controller FSM, responsible for 
the activation of the select signals 
(not shown)
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Module 1

Module
K+1

Module Z

Module 2

n tri-state drivers, controlled
by a common enable signal

Module K

… …

… …
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Recall: Bus With Tri-State Drivers
Previously on FDS

▪ Bus implemented with tri-state 
drivers is less common today; 
it is used when one expects
additional modules will be added
to the system in the future
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Module 1

Module
K+1

Module Z

Module 2

n tri-state drivers, controlled
by a common enable signal

Module K

… …

… …
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Bus with Tri-State Drivers
Example: Swapping Two Registers
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Swapping Two Registers
Bus with Tri-State Drivers

Consider a system with three 
registers: R1, R2, and R3

▪ Design a controller FSM that swaps 
the contents of registers R1 and R2, 
using R3 for temporary storage

▪ Write a Verilog model of the system
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Control
circuit
(FSM)
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interconnect
with tri-state 

drivers
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Swapping Two Registers
FSM Ports

▪ swap

• Control signal triggering 
(initiating) the swap

• Input

▪ done

• '1' (high) at the end of the swap; 
'0' (low), otherwise

• Output

▪ Synchronous power-on reset

• Input, not shown
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Swapping Two Registers
FSM Ports

▪ R1out, R2out, R3out

• Write to the bus

• If active, places the value 
from a register to the bus

• Output

▪ R1in, R2in, R3in 

• Write to the register

• If active, places the value 
from the bus to a register

• Output
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Swapping Two Registers
FSM

▪ Algorithm for swapping:

• Swap starts → Copy data from R2 to R3

• Copy data from R1 to R2

• Copy contents of R3 to R1 → Swap ends

▪ States of the FSM
• IDLE: No swapping

• R2TOR3: First copy

• R1TOR2: Second copy

• R3TOR1: Third copy

▪ Synchronous power-on reset

CS-173, © EPFL, Spring 2025

IDLE

R2TOR3

R1TOR2

R3TOR1
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Swapping Two Registers
IDLE State
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IDLE
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Control
circuit
(FSM)
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R3

Shared 
interconnect
with tri-state 

drivers

No writing to the bus
No writing to the registers
Active "swap" starts the data movement
Default state after reset
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Swapping Two Registers
R2TOR3 State
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drivers

Writing from register R2 to the bus
Writing from the bus to register R3

R2TOR3

From IDLE
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Swapping Two Registers
R1TOR2 State
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R3TOR1

Swapping Two Registers
R3TOR1 State
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Control
circuit
(FSM)
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Shared 
interconnect
with tri-state 

drivers

Writing from register R3 to the bus
Writing from the bus to register R1
"Done" becomes active

From R1TOR2

To IDLE
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Swapping Two Registers
Summary

▪ Algorithm for swapping:

• Swap starts → Copy data from R2 to R3

• Copy data from R1 to R2

• Copy contents of R3 to R1 → Swap ends

▪ States of the FSM
• IDLE: No swapping

• R2TOR3: First copy

• R1TOR2: Second copy

• R3TOR1: Third copy

▪ Synchronous power-on reset
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IDLE

R2TOR3

R1TOR2

R3TOR1
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Swapping Two Registers
FSM in Verilog
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module control (clk, reset, swap, R1in, R1out, R2in, R2out, R3in, R3out, done);
input clk, reset, swap;
output reg R1in, R1out, R2in, R2out, R3in, R3out, done;
parameter IDLE = 2'b00, R2TOR3 = 2'b01, R1TOR2 = 2'b10, R3TOR1 = 2'b11;
reg [1:0]  S_next, S;
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Swapping Two Registers
FSM in Verilog
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// Next-state logic
always @ (*) begin
S_next = IDLE;  // default, idle state
case (S)
IDLE: if (swap) S_next = R2TOR3;

else S_next = IDLE;
R2TOR3:         S_next = R1TOR2;
R1TOR2:         S_next = R3TOR1;
R3TOR1:         S_next = IDLE;
default:        S_next = IDLE; // default

endcase
end
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Swapping Two Registers
FSM in Verilog
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// State memory
always @ (posedge clk) begin
if (reset)  S <= IDLE;  // reset to IDLE
else S <= S_next;

end

// Output logic
always @ (*) begin
R1in  = (S == R3TOR1);
R1out = (S == R1TOR2);
R2in  = (S == R1TOR2);
R2out = (S == R2TOR3);
R3in  = (S == R2TOR3);
R3out = (S == R3TOR1);
done  = (S == R3TOR1);

end
endmodule
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Swapping Two Registers
Verilog, Contd.

▪Missing pieces: 
• Tri-state drivers

for the bus
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module bustri (w, en, f);
parameter n = 8; // default size
input [n-1:0]      w;
input en;
output [n-1:0]      f;

assign f = en ? w : 'bz;
// either assign a new value or high-impedance

endmodule
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Swapping Two Registers
Verilog, Contd.

▪Missing pieces: 
• Register module

for registers R1, R2, R3
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module regn (D, clk, reset, en, Q);
parameter n = 8;  // default size
input [n-1:0]      D;
input clk, reset, en;
output reg [n-1:0] Q;

always @ (posedge clk) begin
if (reset)   Q <= 0;
else if (en) Q <= D;  // write enable

end
endmodule
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Swapping Two Registers
Putting It All Together
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• Registers drive the inputs of tri-state drivers
• Tri-state buffers drive the bus
• Bus drives the register inputs

module regswap (clk, reset, swap);
parameter width = 8; // width is "n", the number of wires on the bus
input clk, reset, swap;
wire wR1in, wR1out, wR2in, wR2out, wR3in, wR3out, wdone;
wire [width-1:0] wR1, wR2, wR3, wBus;
// Instantiate controller module
control controller_module ( .clk (clk), .reset (reset), .swap (swap),

.R1in (wR1in), .R1out (wR1out), .R2in (wR2in), .R2out (wR2out),

.R3in (wR3in), .R3out (wR3out), .done (wdone));

// Instantiate registers
regn #(.n (width)) R1 (.D (wBus), .clk (clk), .reset (reset), .en (wR1in), .Q (wR1));
regn #(.n (width)) R2 (.D (wBus), .clk (clk), .reset (reset), .en (wR2in), .Q (wR2));
regn #(.n (width)) R3 (.D (wBus), .clk (clk), .reset (reset), .en (wR3in), .Q (wR3));

// Bus with tri-state drivers
bustri #(.n (width)) bustri1 (.w (wR1), .en (wR1out), .f (wBus));
bustri #(.n (width)) bustri2 (.w (wR2), .en (wR2out), .f (wBus));
bustri #(.n (width)) bustri3 (.w (wR3), .en (wR3out), .f (wBus));

endmodule
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Bus with a MUX
Example: Swapping Two Registers
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Recall: Bus With MUXes
Previously on FDS

▪ Bus implemented with MUXes
is more common

▪ The MUX takes K (K  2) 
n-bit inputs and an                -bit 
select signal s to select which 
of the inputs to pass to the 
output

▪ There is another module, 
typically a controller FSM, 
responsible for the activation of 
the select signals (not shown)
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Module 1

Module 2

Module K

Module
K+1

ModuleZ

0

1

K-1

………

… …

Note: Optional feedback paths
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Swapping Two Registers
Bus with MUXes

Consider a system with three 
registers: R1, R2, and R3

▪ Design a controller FSM that 
swaps the contents of 
registers R1 and R2, using 
R3 for temporary storage

▪ Write a Verilog model of
the system
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Control
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interconnect
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Swapping Two Registers
FSM

▪ Algorithm for swapping:

• Swap starts → Copy data from R2 to R3

• Copy data from R1 to R2

• Copy contents of R3 to R1 → Swap ends

▪ States of the FSM
• IDLE: No swapping

• R2TOR3: First copy

• R1TOR2: Second copy

• R3TOR1: Third copy

▪ Synchronous power-on reset
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IDLE

R2TOR3

R1TOR2

R3TOR1
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Swapping Two Registers
FSM

▪ No longer needing R1out/R2out/R3out
• MUX select signal sel fulfills the role

▪ MUX select signal is simply the state 
of the FSM

▪ In every state (every select signal 
value), something is sent to the bus
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IDLE

R2TOR3

R1TOR2

R3TOR1
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Swapping Two Registers
FSM in Verilog
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module controlbusmux (clk, reset, swap, R1in, R2in, R3in, done, sel);
input clk, reset, swap;
output reg R1in, R2in, R3in, done;
output reg [1:0] sel;

parameter IDLE = 2'b00, R2TOR3 = 2'b01, 
R1TOR2 = 2'b10, R3TOR1 = 2'b11;

reg [1:0] S_next, S;
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Swapping Two Registers
FSM in Verilog
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// Next-state logic
always @ (*) begin
S_next = IDLE;
case (S)

IDLE: if (swap) S_next = R2TOR3;
else S_next = IDLE;

R2TOR3:         S_next = R1TOR2;
R1TOR2:         S_next = R3TOR1;
R3TOR1:         S_next = IDLE;
default:        S_next = IDLE;

endcase
end
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Swapping Two Registers
FSM in Verilog
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// State memory
always @ (posedge clk) begin
if (reset)  S <= IDLE;
else S <= S_next;

end

// Output logic
always @ (*) begin
R1in  = (S == R3TOR1);
R2in  = (S == R1TOR2);
R3in  = (S == R2TOR3);
done  = (S == R3TOR1);
sel =  S;

end
endmodule
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Swapping Two Registers
Putting it All Together
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module regswapbusmux (clk, reset, swap);
parameter width = 8; // width is "n", the number of wires on the bus
parameter IDLE = 2'b00, R2TOR3 = 2'b01;
parameter R1TOR2 = 2'b10, R3TOR1 = 2'b11;
input clk, reset, swap;

wire wR1in, wR2in, wR3in, wdone;
wire [width-1:0] wR1, wR2, wR3;
wire [1:0]       wsel;  // for the bus with MUXes
reg [width-1:0] wBus;  // for the bus with MUXes
// Instantiate controller module
controlbusmux controller_module ( .clk (clk), .reset (reset), .swap (swap),

.R1in (wR1in), .R2in (wR2in), .R3in (wR3in),

.done (wdone), .sel (wsel));
// Instantiate registers
regn #(.n (width)) R1 (.D (wBus), .clk (clk), .reset (reset), .en (wR1in), .Q (wR1));
regn #(.n (width)) R2 (.D (wBus), .clk (clk), .reset (reset), .en (wR2in), .Q (wR2));
regn #(.n (width)) R3 (.D (wBus), .clk (clk), .reset (reset), .en (wR3in), .Q (wR3));

Complete the module by inserting the multiplexer block…
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Swapping Two Registers
Verilog, Contd.

▪ Missing pieces
• A bus with a MUX

wsel:   select signal for the MUX
wBus: value on the bus

(MUX output)
wR1:   default value on the bus

(output of register R1)
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Swapping Two Registers
Verilog, Contd.
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// Bus with a multiplexer
always @ (*) begin
wBus = wR1;
case (wsel)
IDLE:     wBus = wR1;
R2TOR3:   wBus = wR2;
R1TOR2:   wBus = wR1;
R3TOR1:   wBus = wR3;
default:  wBus = wR1;

endcase
end

R1

R2

R3

0

1

2

Complete the module by inserting the multiplexer block…
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Verilog
• Reduction operators

CS-173, © EPFL, Spring 2025
© kras99 / Adobe Stock

39



Verilog Reduction Operators

▪ Reduction operators are unary 
operators (i.e., take one operand) 
that perform bitwise operations 
on all bits of the vector operand 
to produce a single-bit result
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& reduction and

~& reduction nand

| reduction or

~| reduction nor

^ reduction xor

~^ reduction xnor
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Verilog Reduction Operators
Contd.

▪ Reduction and, or, xor
• The first step of the operation applies the operator between the first bit 

of the operand and the second

• The second and subsequent steps apply the operator between
the one-bit result of the prior step and the next bit of the operand

▪ Reduction nand, nor, xnor
• The result is computed by inverting the result of the reduction and, or, 

and xor, respectively
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From least to most significant bit

Verilog Reduction Operators
Examples

▪ A= 8’b10101111
• Example: z = &A

z = (((((((1 & 1) & 1) & 1) & 0) & 1) & 0) & 1)

Result: z = 0

• Example: z = ~^A
z = ~(((((((1 ^ 1) ^ 1) ^ 1) ^ 0) ^ 1) ^ 0) ^ 1)

Result: z = 1
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& reduction and

~& reduction nand

| reduction or

~| reduction nor

^ reduction xor

~^ reduction xnor
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Verilog Reduction Operators
Contd.

▪ Examples of practical scenarios

• Zero detection – check if any bit of a bus vector is ‘1’ without a loop
wire zero = ~| my_bus;  // 1 if all bits are 0

• Parity checking – simple error detection (for memory, communication buses) wire
parity = ^data;  // XOR all bits for parity

• Fast flag setting—a quick way to set a “done” flag if any of several modules have completed
wire done = | done_signals;

• Checking “all ones” quickly (e.g., completion/done flags, timers, etc.)
wire all_ones = & status_bits;
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Verilog
• Generate constructs

• Example: Ripple-Carry Adder

CS-173, © EPFL, Spring 2025
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Recall: Full Adder

▪ Behavioral Verilog model
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w1

w2

w3

fulladd

module fulladd (a, b, c_in, s, c_out);

input a, b, c_in;
output s, c_out;

assign s = a ^ b ^ c_in;
assign c_out = (a & b) | (a & c_in) | (b & c_in);

endmodule
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module ripplecarry (Cin, A, B, S, Cout);
parameter n = 32;
input              Cin;
input [n-1:0]      A, B;
output reg [n-1:0] S;
output reg Cout;

reg [n:0] C;  // internal wires
integer k;  // loop iterator, an integer

always @(*) begin
C[0] = Cin;
for (k = 0; k < n; k = k + 1) begin
S[k] = A[k] ^ B[k] ^ C[k];
C[k+1] = (A[k] & B[k]) | (A[k] & C[k]) | (B[k] & C[k]);

end
Cout = C[n];

end
endmodule

Ripple-Carry Adder with a for Loop
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FAFA FA

RCA
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Verilog Generate Construct

▪ Can we combine for loops with module instantiations? Yes!

▪ Verilog generate construct allows module instantiation to be 
included inside for loops and if-else statements
• generate construct lets us create multiple instances (loops, or 

conditionally included) of hardware at compile time—cleanly and 
systematically—without manually copying code (repetitive, harder 
maintenance) and introducing errors (esp. when scaling the design)

• generate provides a way to create multiple pieces of hardware based 
on parameters or iterations
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Verilog Generate Construct

▪ If a for loop is included in the generate block, the loop index 
variable has to be of type genvar

▪ genvar is an integer variable that can only have values  0, 
(it would not make sense to instantiate a negative number of 
modules) and can only be used inside generate blocks
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module ripplecarrygenerate (Cin, A, B, S, Cout);
parameter n = 32;
input Cin;
input [n-1:0] A, B;
output [n-1:0] S; // must match the type of fulladd port .s
output Cout;      // must match the type of fulladd port c_out
genvar g;         // generate loop iterator, must have genvar type
wire [n:0] C;     // must match the type of fulladd ports .c_in, c_out

assign C[0] = Cin; // first carry

// generate block here

assign Cout = C[n]; // last carry
endmodule

Ripple-Carry Adder with a generate Construct
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// generate block
generate          // optional keyword, helps readability
for (g = 0; g < n; g = g + 1) begin

fulladd stage (.a (A[g]), .b (B[g]), .c_in (C[g]), .s (S[g]), .c_out (C[g + 1]));
end

endgenerate // optional keyword, helps readability

Ripple-Carry Adder with a generate Construct
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▪ Full adder ports a, b, c_in, s, and c_out connect to vectors A, B, carry C, and sum S, respectively

▪ fulladd is the name of the module being instantiated multiple times

▪ stage is the name of one instance of a module; it is user-defined, so choose an appropriate one
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Next on FDS
…Designing a Simple Processor
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Literature
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▪ Chapter 3: Number Representation and 
Arithmetic Circuits
▪ 3.5.3, 3.5.4

▪ Chapter 7: Digital System Design
▪ 7.1 Bus Structure
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